
 
 
 

Erinosho et al.: Grating Lobes Suppression in Linear Arrays of Resonant Half-wave Dipoles 114 

  
 

Premier Journal of Engineering and Applied Sciences 
Publication of Nigerian Society of Engineers, Ibadan Branch Vol. 1, No. 2, 2020  

Grating Lobes Suppression in Linear Arrays of Resonant Half-wave 

Dipoles 

T. Christiana Erinoshoa*, S. Adeniyi Adekolaa,b, K. Akinwale Amusaa 

aDepartment of Electrical and Electronics Engineering, Federal University of Agriculture, Abeokuta, 

Nigeria 
bDepartment of Electrical and Electronics Engineering, Federal University of Otuoke, Otuoke, Nigeria 

 
Corresponding Author: toluerinosho@gmail.com 

A R T I C L E  I N F O 
 

A B S T R A C T 
Received: November, 2019 

Accepted: March, 2020 

Published: April, 2020 

 This paper investigates how undesirable grating lobes can be 

suppressed from the visible range of patterns radiated by a linear array 

of identical resonant dipoles. Using Method of Moments (MoM) 

approach, the far-zone electric field intensity due to the primary array 

element is determined, and following the pattern multiplication 

principle, a product of the elemental pattern and the array factor 

provides an expression for the total field radiated by the linear array, 

in terms of design parameters, including inter-element spacing. It is 

found from computational results that the upper bound for inter-

element separation assumes values of 0.45 λ and 0.41 λ for the 

suppression of grating lobes in the cases of broadside and ordinary 

end-fire linear arrays, respectively. Results of several computations 

reveal certain interesting features. An expression to determine the 

number of grating lobes in both the array factor and in the 

corresponding total electric field pattern radiated for the linear arrays 

of dipole is easily obtained and presented. With this result, grating 

lobes suppression in linear array is realizable by careful choice of 

inter-element separation and its integral multiples.   
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1. INTRODUCTION 

A multi-element antenna called an antenna array produces better radiation characteristics than a single 

element antenna (Erinsho et al., 2017). The antenna type, geometrical arrangement of elements of the array 

and the choice of excitation, combined to determine the overall radiation pattern of the array antenna. 

However, in the design of such array of antennas, especially those for broadcasting applications, grating 

lobe, which is almost of equal magnitude as the main lobe but radiates in an undesired direction, must be 

adequately suppressed. This is because the total power radiated by the elements of the array is shared 

between the main lobe and the grating lobes thereby leading to a waste of electromagnetic energy and 

reduction in power efficiency of the antenna (Vosoogh and Kildal, 2016). Additionally, these spurious 

signals constitute a health hazard to the personnel working in the vicinity of the antennas and increase the 

level of electromagnetic interference in the air space.  

Several solutions and techniques have been proposed for the suppression of grating lobes in the literature. 

The list includes grating lobes suppression via discontinuity of the periodicity of the array elements (Wang 
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et al., 2008), the use of Tabu-search algorithm (Merad et al., 2008), replacement of individual elements in 

a linear array with a pair of elements called a discrete dipole element (Chakravorty and Mandal, 2016) and 

a host of other methods that can be found in the literature where similar problem is addressed (Wang et al., 

2018; Oliveri and Massa, 2011; Sharma and Fiete, 1988). However, validity of proposed solutions in those 

previous studies are premised on the assumption that the inter-element spacing between array elements is 

not more than half-wavelength (Suarez et al., 2012; Alshammary et al., 1981; Amlaner, 1979). How close 

or far from half-wavelength the spacing will be is left for individual choice.  

In this study, an approach for the determination of the optimum inter-element spacing for grating lobe 

suppression in a linear array of resonant dipoles is proposed. In addition, a general expression to quantify 

the possible number of grating lobes that is in a typical linear array of antenna of a given geometrical 

configuration is provided. Sparse arrays produce more grating lobes compared with uniformly spaced arrays 

(Wang et al., 2018; Oliveri and Massa, 2011). Therefore, broadside and ordinary end-fire linear arrays of 

dipoles are investigated in such a manner that the undesirable grating lobe is completely suppressed within 

the visible range. Since directivity is a function of radiation intensity, which is directly proportional to 

pattern radiated by an antenna, investigated also is the effect of the number of elements on the directivity 

and side-lobe level in the array pattern. This is considered pertinent as there is always a trade-off between 

directivity and side-lobe level suppression in wireless communication systems. MoM is employed as the 

numerical tool while analyzing the problem of the single dipole element using the entire basis function in 

the expansion of the unknown current, which constitutes the radiation source, in the antenna structure. 

2. METHODOLOGY 

The geometry of an elemental dipole adopted in this work is a half-wave dipole antenna excited by a 1-Volt 

delta gap source as shown in Figure 1. 

 

Fig. 1: Geometrical representation of half-wave dipole fed by a delta-gap source 

For MoM to be used in the numerical analysis of a wire antenna and in an attempt to develop a generalized 

formulation for the electromagnetic field’s expressions, it is assumed that the dipole is electrically thin and 

perfectly conducting. The feed-point impedance inZ
 
of a dipole is highly sensitive to its electrical length 

and the location of the feed-point. Hence, dipole performs optimally over a narrow bandwidth beyond which 
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its impedance becomes a poor match for the transmitter and receiver.  The feed-point impedance, inZ  can 

be generally expressed as  

in in dZ R jX          (1) 

provided ( , )in dR X  are the input resistance and reactance of the dipole, respectively. It is a known fact that 

the diameter of the wire determines the value of the reactance, dX . However, for a half-wave dipole, its 

radiation resistance is far greater than the impedance of the transmission line ( d inR Z ), which is also much 

larger than the input resistance, inR  of the wire, hence its efficiency approaches 100%. In other to remove 

the reactance in a dipole for the transmission line, its length is reduced by an adjustment factor, q whose 

value depends on the diameter d , of the wire. For a thin wire, having diameter, 
5

 10d 


 , 0.98q  , 

whereas for a thick wire, 0.008d  ,   0.94q  (Stutzman, 1981). Thus, dipole antennas made from wires 

with these diameters are resonant owing to the fact that values of their reactance are zero and maximum 

power transferred is guaranteed in such situation.   

Based on the foregoing, a rule of thumb to obtain the resonant length el  of a typical wire antenna of physical 

length pl  is by multiplying pl  with the adjustment factor. That is 

e pl q l          (2) 

For a half-wave dipole, its electrical length is given as 

0.5el q           (3) 

which yields a value of 0.49el   for a thin wire resonant dipole with the radius of the dipole, 65 10a   

. This value is adopted as the electrical length of an elemental dipole in the analysis presented in this work. 

2.1 Electromagnetic (EM) Fields Radiated by Half-wave Resonant Dipole  

Since the dipole is assumed to be perfectly conducting and the incident field exists only at the antenna 

terminal (feed gap), it follows that the total electric field component that is tangential to the surface of the 

wire is identically equal to zero such that  

2 2

s i
z z

l l
E E z


          (4) 

provided s
zE  is the radiated field due to the current ( ')I z  resulting from the source field, i

zE .  

Consider the wire from which the dipole is made to be of infinite conductivity and very thin wire, then 

without loss of generality, one may assume that the current flowing is confined to the surface of the wire 

and has a z-directed axial component only. Consequent of above assumptions, the associated magnetic 

vector potential admits the form expressible as 

02

0

2

(z') '
4

l

l

j R

z

e
A I dz

R





 



      (5) 

and the corresponding electric field radiated by the dipole at the observation point is written as 

0
s
z zE j A           (6) 

where 0 0( , )  are the permeability of free space and the wave number, respectively, and R is the distance 

from the source point to the field point P as depicted in the Figure 1. 

Invoking appropriate far-field approximations and using (5) and (7) in (6), the θ-component of the electric 

field radiated by an elemental dipole assumes the form expressible as  
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
     (7) 

The unknown current ( ')I z present in the integral equation described by (7) is obtainable through the use of 

the MoM procedure when (7) is re-cast in a form expressible as  

( )L u h         (8) 

where L is an integro-differential linear operator, u is the unknown quantity ( ')I z and h is the known source 

field. Application of MoM procedure allows the unknown function ( ')I z in (7) to be rendered in terms of 

known basis function mg  and unknown expansion coefficients, nI  as  

1

( ') ( ')

N

n m

n

I z I g z



        (9) 

provided nI  represents the unknown complex current coefficient of mode n on the element and ( ')mg z  is 

the basis function defined globally as 

(2 1) '
( ') cosm

m z
g z

l

 
  

 


      (10) 

Using a delta function as the testing function and applying Galerkin’s method on the expansion function 

coupled with the use of suitable trigonometric identities, (7) assumes a form written as 

  
0

0   

1

sinc( ) sinc(A )
44

Nj r

n

n

j e sin
E I A

r





    
 


 





 




    (11) 

where, 

0

2(2m 1)
cos

4
A

 
 



  
  
 

      (11a) 

and 

0

2(2m 1)
cos

4
A

 
 



  
  
 

      (11b) 

 

The corresponding far zone magnetic field H is obtained as 

  
0

0   

10

sinc( ) sinc(A
44

)

Nj r

n

n

j e sin
H I

r
A 





   
   

 





 


     (12) 

where o is the intrinsic impedance of free-space. The normalized electric field radiated by the dipole has 

been obtained elsewhere (Erinosho et al., 2017) as 

( ) sinnE           (13) 

2.2 Total Electric Field Radiated by Array of dipoles 

Depicted in Figure 2 is an N-element array of identical dipoles that is positioned along the z-axis. Current 

flowing in each of the array elements symbolized by ( ')I z  is assumed equal for all elements of the array 

and flow along the z-axis. Hence, the array is said to be collinear.  
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A uniformly spaced distribution is assumed between the elements such that the total field radiated by the 

array of dipoles is obtained by pattern multiplication theorem, expressible in the form stated as 

t n nE ( , ) E ( , ) AF ( , )              (14) 

provided nE ( , )  ,
nAF ( , ) 

 
are the normalized field pattern of an elemental dipole and normalized array 

factor, respectively. The normalized array factor is a function of the geometrical configuration of the array 

and respective excitation phase  , expressed as  

 

 
n

sin 0.5N
AF ( , )

Nsin 0.5


  


      (15) 

where 

zkd cos           (15a) 

provided  N is the number of elements in the array; β is the progressive phase shift between elements; θ is 

the elevation angle; 2 /k     is the wavenumber and zd  represents the inter-element spacing between 

array elements.  

 

 

Fig. 2: Geometry of an N-element collinear array of dipoles 

2.2.1 Broadside Arrangement of Array Elements 

Here, the direction of the maximum radiation, 0
max 90 . It follows that (15) is maximum at 0 , hence 

0 , with the corresponding normalized array factor obtained from (15) as 

 

 
090

sin 0.5
( , )

sin 0.5
n

N
AF

N





 


      (16) 
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and the corresponding normalized total field obtained from (14) as 

 

 
nt

sin 0.5N
(E( , ) ) sin

Nsin 0.5


   


      (17) 

where use has been made of (13) and (16) to arrive at (17). 

2.2.2 End-fire Arrangement of Array Elements 

This type of array has its maximum radiation along the axis of the array. Hence, for the array depicted in 

Figure 2, 0 0
max 0 180or . Application of this condition in (15) yields  

 

 
0 00 180

1
sin 0.5 (cos 1)

( , )
sin 0.5 (cos 1)

z

n or
z

Nkd
NAF

kd


m

m


 


    (18) 

from which the normalized total electric field of ordinary end-fire arrangement is obtained from (14) upon 

invocations of (13) and (17) as 

 

 t

1
sin 0.5 (cos 1)

(E( , ) ) sin
sin 0.5 (cos 1)

z

n
z

Nkd
N

kd


m

m


  


    (19) 

Presented and discussed in what follows are the numerical results of the array factor and the corresponding 

field patterns obtained at varying values of inter-element spacing, zd . It worth mentioning that result 

obtained elsewhere (Erinosho et al., 2017) is as guide on the choice of values of zd utilized in the 

investigation. 

3. RESULTS AND DISCUSSION 

In the computer simulations of the array of dipoles, use is made of MATLAB software. The results are 

presented in two modules: first is the array factor patterns computed using (16) and the corresponding 

electric field patterns for the broadside array, as computed from (17). Second, the array factor patterns 

computed from (18) and the corresponding electric field patterns for the ordinary end-fire array, as 

computed from (19) are displayed. The strategy employed for both array arrangements is to fix the number 

of elements, N, at 16, frequency, f, at 1200 MHz (GSM band) while computing patterns of array factor and 

field radiated, at different values of the inter-element spacing, zd . Details of results computed are presented 

in what follows starting with the broadside array. 

3.1 Broadside Case 

Figures 3(a) – 3(d) depict responses of the array to increasing inter-element spacing. As expected, the 

directivity of the dipole array increases with inter-element separations, though, with generation of more 

side lobes. The patterns show that the optimum inter-element spacing, maxd for broadside arrangement is 

0.45 λ as portrayed in Figure 3(a). Beyond this value of inter-element separation, grating lobes begin to 

occur in the visible range of the pattern. These features are displayed in figures 3(b) – 3(d). It is observed 

that the number of Grating Lobes (GLs) appearing in the patterns when the spacing is an integral multiple 

of maxd = 0.45 λ, follows a definite pattern. This is illustrated in Table 1. 
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Table 1: Analysis of GL in the patterns of the array factor and field radiated by broadside linear array of 

dipoles 

Values of zd  

(λ) 

Equivalent value of zd  

in terms of maxmd  

Number of GL in the 

array factor patterns  

2(m-1) 

Number of GL in the 

Electric field patterns  

2(m-1) 

0.45 1 maxd  0 0 

0.90 2 maxd  2 2 

1.35 3 maxd  4 4 

1.80 4 maxd  6 6 

It can thus be inferred that in a broadside linear array of N-elements, having its fundamental maximum 

inter-element separation denoted as maxd , if the spacing between array elements is maxmd , then the number 

of GLs appearing in the visible range of both patterns of the array factor and field radiated is given by 

2( 1)m   , provided m is a positive integer. 

  
Fig. 3: Normalized array factor and corresponding normalized total electric field patterns for 

broadside array of resonant half-wave dipole when N=16, f =1.2 GHz (a) dz = 0.45 λ (b) dz = 0.9 λ (c) 

dz = 1.35 λ (d) dz = 1.80 λ 
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3.2 Ordinary End-fire Case 

Illustrated in Figures 4(a) – 4(d) are the array factor patterns together with the corresponding electric field 

patterns of an end-fire array, for θ =1800. It is to be pointed that in Figure 4(a), maxd is identically equal to 

0.41λ in order to accomplish complete grating lobe suppression for that end-fire array. As highlighted in 

Table 2, the number of grating lobes appearing in patterns of both array factor and field radiated also satisfy 

the expression 2( 1)m   respectively, where m is a positive integer. 

Table 2: Analysis of GL in the array factor and field patterns of an end-fire array of dipoles 

Values of dz 

(λ) 

Equivalent value of dz  

in terms of maxmd  

Number of GLs in the 

array factor patterns  

2(m-1) 

Number of GLs in the 

Electric field patterns  

2(m-1) 

0.41 1 maxd  0 0 

0.82 2 maxd  1 2 

1.23 3 maxd  2 4 

1.64 4 maxd  3 6 
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Fig. 4: Normalized array factor and corresponding normalized total electric field patterns for 

ordinary end-fire array of resonant half-wave dipoles when N = 16, f = 1.2 GHz (a) dz = 0.41 λ (b) dz 

= 0.82 λ (c) dz = 1.23 λ (d) dz = 1.64 λ 

4. CONCLUSION 

It shown in this paper that the optimum inter-element separation designated as maxd  represents a veritable 

control measure for the removal of grating lobes from the visible range of patterns radiated by linear 

broadside and ordinary end-fire arrays of resonant dipoles. Indeed, optimum values of maxd determined 

precisely here via several computations yield (0.45λ, 0.41λ) for the broadside and ordinary end-fire arrays, 

respectively. It is established here that if the inter-element spacing in linear array of resonant dipoles is 

given as maxmd , where m is a positive integer and maxd is the optimum inter-element separation, the number 

of grating lobes existing in the visible range of the array pattern is determined as  2(m – 1), irrespective of 

whether the arrangement is broadside or ordinary end-fire. With this knowledge of method of predicting 

the number of grating lobes that are possible within the visible region of linear arrays, antenna design work 

will be greatly enhanced by careful selection of inter-element separations that will ensure non-appearance 

of un-desirable grating lobes. 
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